Two California Outdoor Theaters

“...when the drama has been simplest, most genuine and lit up by the joy of living, it has had its setting in the open.”

— Sheldon Cheney, *The Open Air Theater*, 1918
Outdoor theaters have a uniquely close relationship to the landscapes they inhabit, particularly to the earth from which they are carved. Similar to the earthworks of today’s environmental artists, they provide poignant insight into how a culture regards the landscape and nature. Exemplary outdoor theaters — constructed in America’s estate gardens, parks, campuses and development projects — can provide models for creating memorable relationships between structure and site that reveal the unique character and spiritual power of a particular landscape.

Today we often associate outdoor theaters with large commercial facilities that offer music concerts to capacity crowds or historical dramas to summer tourists. Although outdoor theaters can be built at a fraction of the cost of similarly sized indoor theaters, they frequently mimic the characteristics of indoor theaters rather than capitalize on the unique opportunity of gathering citizens together in the landscape.

This disregard of the landscape setting in theater design was not always the case. During the early 1900s a “new drama” movement focused the creative energies of an avant-garde group of theatrical professionals, naturalists and designers on creating open air theaters that were an antidote to the increasing technical and commercial concerns of indoor theaters. Influenced by Greek artistic and democratic ideals, these theater enthusiasts envisioned theaters as community structures that would contribute to the spiritual and civic well-being of American life by making the joys, good health and inspiration of nature available to all.

This civic and environmental idealism was still evident in theaters built in the 1920s and in the Works Progress Administration theaters of the 1930s and 1940s. After World War II, theater managers began updating older theaters and building new outdoor theaters with plastic seats, lighting structures, sound systems, concession facilities and canopies to provide the amenities found in interior theaters. The resulting structures often
“...through the spoken work, the rendition of music, through song and dance the outdoor theater can contribute to mental, physical and spiritual growth. If it is healthful to exercise, work, play, and sleep in the open, it should be even more beneficial to have our finer sensibilities unfolded in the same favorable atmosphere.”

— Emerson Knight, Landscape architect, “Outdoor Theaters and Stadiums in the West,” in The Architect and Engineer, 1924
stage lighting, rain and overhead air traffic to participate in cultural and civic events that engage the landscape. An understanding of these memorable older theaters can red hẳn our commitment to creating structures that interpret and highlight the site’s unique natural character and, consequently, inspire reflection on how culture can interface with the beauty and rhythms of nature.

Locating theater precedents that successfully interpret their site is difficult since there are only two American books on outdoor theaters: The Open-Air Theatre (1948) by theater critic Sheldon Cheney and Outdoor Theaters (1977) by landscape architect Frank Waugh. The majority of the case study theaters in these books are still intact and in active use, a testament of the appeal and endurance of thoughtfully designed theaters. Both books discuss explicitly how the theaters address their surrounding landscapes, indicating this era’s focus on the landscape.

With insights pertinent to contemporary design, Cheney’s book differentiates two design approaches. His “architectural theater” is most clearly depicted in the book’s images of the 1906 Point Loma, Calif., Thesosophical Society Greek Theater. This type juxtaposes strong geometric forms against the surrounding landscape to reveal characteristics of the site that might otherwise go unnoticed, such as a steep slope or an unusual rock formation that is highlighted by placing a contrasting wall behind it. The Thesosophical Society’s white geometric forms contrast sharply with the adjacent canyon and coastline, focusing our attention on their rugged slopes. Like its classical Greek precedent, the still intact Thesosophical Theater was designed for its view from the theater rather than by the appearance of the theater itself in the landscape.

Cheney’s “nature theater” merges with the landscape, giving the impression that it is a part of its natural surroundings. With a stage background of vegetation or the landscape beyond, this theater type implies that both performers and audience are merely a part of the scenery. Seating is typically integrated into the topography, is built from materials indigenous to the site and is often interrupted by vegetation or stones. At one of Cheney’s examples, the Guerneville, Calif., Bolinasian Grove Theater, the stage evolved gradually on a redwood covered slope during the late nineteenth century. Its unique vertical stage still accommodates an annual Grove Plays, in which actors appear on three different levels from behind the redwoods.

The two California theaters described in this article, Mount Helix Nature Theater and Mt. Tamalpais Mountain Theater, do not fit neatly into these categories, but instead exhibit properties of both theater types. The formal concepts of both theaters begin with simple geometric ideas that, like Cheney’s architectural theater, contrast with the geometries of the natural site. But these forms are modified, adjusted and distorted to respond to the natural patterns of the particular site. Many of these site-specific adjustments are apparent in the initial proposals, but significant modifications were made during construction when these schematic ideas were fine tuned to the particulars of their immediate landscapes.

A longer version of this article, and the photographs by Alan Tréal, are part of a forthcoming book and exhibition, Great Stages of Selection of American Outdoor Theaters. The book will include nearly thirty images of exemplary theaters drawn to the same scale with accompanying historical and contemporary photographs.

Funding for this research was supported by the National Endowment for the Arts, Design Arts Program, and by the University of California, Berkeley, through its Committee on Research and the Department of Landscape Architecture’s Fernald Fund. Research assistance was provided by Terry Clements, Carl Donahue, May Colbran and Adrienne Wang.
Mount Helix Nature Theater

Each Easter since 1945, approximately 7,000 people have attended sunrise services in a grand theater atop Mt. Helix, the highest point in San Diego County. This mountaintop had attracted San Diego residents up a rough helix-shaped road to a panoramic vista long before the theater’s 1945 dedication. Beginning in 1949, Easter worshipers walked two and a half miles up the mountain to crowd onto boulders and makeshift benches for a simple service with a spectacular sunrise view.

One nearby resident, Mary Carpenter Yawkey, came to the mountaintop frequently to meditate in this majestic natural setting. When Yawkey died in 1953 her daughter, Mary Yawkey White, and son, Cyrus Carpenter Yawkey decided to honor their mother by erecting a nature theater on top of Mt. Helix for “inspiration and public use.” White asked Ed Fletcher, the local entrepreneur who owned the mountaintop, to sell the land. Instead, Fletcher donated it and designated his 23-year-old son, Ed Jr., to oversee construction of the project.

The Yawkeys hired Richard Roqua and Emerson Knight to design the theater. Roqua was a revered local architect who had designed many of the buildings in Balboa Park. Knight, a San Francisco landscape architect, had written extensively on outdoor theaters and designed several theaters in Northern California. The collaboration went well and they created a scheme that was distinct from the variously inspired by the rugged nature of the site:

“Mt. Helix rises from the mesa almost a perfect cone in outline to an altitude of 1,300 ft. A site more inspiring, more ruggedly picturesque, more accessible or otherwise more perfectly fitted to its purpose could hardly be found the world over. ...Every cut and fill, every rock formation and boulder and even every plant and shrub must be carefully considered so that perfect harmony of parts and unity with the setting is secured and maintained” (Roqua, 1943).

The two men proposed a symmetrical, fan-shaped scheme to be built of indigenous stone and
concrete colored to match the local soil. The theater’s symmetrical layout was slightly compromised by an eroded periphery that accommodates large rock outcappings. The convex shape of the mesa clearly conflicts with the expected bowl shape of a theater, but Knight and Requa saw the power of this rugged site, with its extraordinary view, as reason enough to locate a theater there.

They then looked to the site itself to create a theater form that reflected the topography. The auditorium is long and narrow to minimize the amount of fill required to counter the conical shape of the mesa. The most unique adaptation is the way the aisles and central seating rise above the side sections to reflect the site’s convexity, creating modulated shadow patterns along the stepped aisles.

“This (convex) form has been preserved by so constructing the seats as to leave the middle section a foot higher than the side sections. The transition is effected first by a step down from the middle section to the adjoining aisles, and then by another step from these aisles down to the side sections” (Knight, 1923).

Although the theater was primarily built of materials found on the site, concrete and steel reinforcing were brought to the confined working area on a daily basis. In a recent interview construction manager Ed Fletcher, Jr., now 94, reminisced about the difficulties in transporting carloads of cement, tons of crushed rock, sand, steel, and hardware up the mountain slope. They were able to bring only enough material for a day’s work at a time, and they carefully avoided excavation that would require carrying rock and soil down the mountain. Due to the almost daily adjustments to subsurface conditions and an initial survey that had inaccurately located rock outcroppings, Requa visited the site several times a week to oversee the adaptation of the schematic plan.

The stage and lower tiers of seating were constructed with minor modifications from the original design, but my recent field measurements indicate that the design of the upper seating tiers was changed substantially to accommodate bedrock and outcappings that became intimate houses. The theater’s long northern aisle focuses on one of these picturesque box seats before taking a sharp diversion around it. The original design’s consistent 1:3 slope was adjusted in the top tiers to steeper slopes to avoid bedrock, thus giving the theater’s profile a distinctive bend that is immediately apparent as one enters.

It is the distortions of the “perfect” geometries of the original proposal that give the theater its visual excitement and highlight the rugged, spiritual character of the natural site, making it a place that visitors return to again and again. The only interruption of the annual Easter observance was between 1942 and 1945, when the army occupied the site. Today the theater accommodates not only the sunrise service, but also dramas, musical events, graduations and weddings.
Sidney B. Cushing Amphitheater

In the early 1900s, hiking at Mt. Tamalpais was a popular Bay Area pastime, fueled by a national conservation movement and magazine articles praising the virtues of nature and healthy outdoor activities as an escape from city congestion. Three hikers discovered the exceptional acoustics of a bowl-shaped Mount Tam site in 1912. They immediately began planning an event that would include a hike to the site, a picnic, and an open-air drama.

On May 15, 1913, 1,200 people hiked either the eight miles from Mill Valley or the one mile from the railroad stop to see the first mountain play, Abraham and Isaac. This first performance was deemed a success and the Mountain Play Association was formed to present a play annually. Over the next 12 years, brush clearings were the only improvements made to the site, even though the steep slopes of both stage and auditorium created challenging operating conditions.

In 1925, shortly after Mt. Helix was dedicated, Emerson Knight began designing the Mt. Tamalpais Mountain Theater. Serious construction on the scheme did not begin until 1934 when the site was donated to the state and the Civilian Conservation Corps began to build the stone seats.

Knight was inspired by Greek theaters' implied association with democracy, their simplicity, and their classic symmetry. At the same time, his focus on maintaining the existing character and structure of the site's contorted topography is clear. His scheme stretches the traditional semi-circular Greek theater horizontally across the site while maintaining the focus on a flat, essentially symmetrical, stage. Because two steep ravines had crested across the stage area, this more required considerable fill and stone retaining walls—a clear indication of Knight's willingness to manipulate the site to meet his design intentions.

But the schematic proposal also pays homage to the natural structure of the site. The auditorium seating, rather than continuing the avoid shape of the stage, tapers into the existing topography to avoid the end wall that would have been necessary to complete the symmetry. The plan also has subtle warps and bends that reflect the locations of the steeper slopes and the drainage ravines. And
the gracefully curving rows are interrupted by
native oaks and protruding rock formations.

Recent field measurements and air photos of
the as-built theater make it apparent that the dis-
tortions of the Greek theater plan became much
more pronounced through field adjustments
during construction. Although the final organiza-
tion of forty rows of seats, three horizontal aisles
and four curved vertical aisles remains similar to
the schematic plan, the seat widths, seat heights
and vertical slopes vary in profile to accommodate
the topography. The upper tiers of seats, instead
of following a consistent elevation, move up and
down with the natural slope, creating undulations
in the horizontal bands of stone to accentuate the
location of the old ravine and drainage swales.
The subtle warping towards the site’s filled
drainage ravine became an axis that reorients the
seating around the old ravine and creates an asym-
metrical stage.

Under the direction of Knight and CCC land-
scape architect Paul Hollohan the seating was
constructed over a four year period. Workers
carefully located 600 to 2,000-pound local
stones that had two weathered surfaces at right
angles to one another to provide flat seats and ver-
tical risers for the terraced seats. Knight was ad-

Plan and section of Sydneby B. Cowling Amphitheater, as
built. Courtesy Linda Jewell.
Courtesy Anenomiyi Engel.
Left: Mt. Tamalpais theater
under construction. Courtesy
Special Collections, College of
Environmental Design
Librury, University of Califor-
nia, Berkeley.

References
Scott Carroll, “Mr. Hell’s Nature Theater — A Gift to Us All,” in Landscapes (La Mesa Historical Society
Sheldon Cherry, The Open
Air Theater (New York: M.
Kennedy, 1970).
Lincoln Fairley, Moos Tensile
Architecture: A History (San Francisco:
Emerson Knight, “Mount Tamalpais Theater on Mt. Tamalpais,” in Landscape. Architect
Emerson Knight, “Outdoor Theaters and
Emerson Knight, “The Mount Tamalpais Nature
Theater,” in A Book of Memories
for the Ages. (Dedication
Publication, 1945).
Richard Ragoon, “My Great-
or Opportunity,” in A Book of Memories
for the Ages. (Dedication
Publication, 1945).
Frank Whight, Outdoor
Theater (Boston: R.G.
Bedient, 1937).